IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimal Timing of Mark-to-Market for Contingent Credit Risk Control

Listed author(s):
  • Jiali Liao
  • Theodore V. Theodosopoulos
Registered author(s):

    Collateral is one of the most important and widespread credit risk mitigation techniques used by practitioners. This paper studies the effect of mark-to-market (MTM) timing in collateral agreements on the contingent credit risk exposure. We measure contingent credit risk exposure using Potential Future Exposure (PFE), the maximum amount of exposure expected to occur at a specified confidence during the remaining duration of the underlying contract. The parameters of a collateral agreement that can affect the contingent credit risk exposure include the frequency and timing of marking-to-market, trigger level for margin calls and the level of collateralization. However, these decisions are often made in an ad-hoc manner, without reference to an analytical framework. While the frequency of mark-to-market and collateral level has been studied, very little academic research has addressed the quantitative analysis of mark-to-market timing. The goal of this research is to fill this theoretical gap and propose a framework for optimizing the timing of mark-to-market in collateral agreements to minimize potential future exposure. Our framework computes the probability of maximum risk exposure of the underlying contract above a specified level during its remaining time until maturity using one or two MTMs whose timing is decided simultaneously at the contract initiation, or in a sequential manner. This probability is expressed as a function of the parameters of the underlying contract which is assumed to follow a Brownian motion and the decision variables in collateralization, including initial margin, trigger level and variation margin. Numerical examples are investigated with different values of volatility and duration of the underlying contract. Sensitivity analysis and numerical results reveal the optimal timing of MTM that minimizes PFE. Simulations are used to test preliminary conclusions from numerical analysis

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 220.

    in new window

    Date of creation: 11 Nov 2005
    Handle: RePEc:sce:scecf5:220
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:220. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.