IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Dynamic optimization and Skiba sets in economic examples

Listed author(s):
  • W.-J. Beyn, T. Pampel, W.Semmler

We discuss two optimization problems from economics. The first is a model of optimal investment and the second is a model of resource management. In both cases the time horizon is infinite and the optimal control variables are continuous. Typically, in these optimal control problems multiple steady states and periodic orbits occur. This leads to multiple solutions of the state-costate system each of which relates to a locally optimal strategy but has its own limiting behavior (stationary or periodic). Initial states that allow different optimal solutions with the same value of the objective function are called Skiba points. The set of Skiba points is of interest, because it provides thresholds for a global change of optimal strategies. We provide a systematic numerical method for calculating locally optimal solutions and Skiba points via boundary value problems. In parametric or higher dimensional systems Skiba curves (or manifolds) appear and we show how to follow them by a continuation process. We apply our method to the models above where Skiba sets consist of points or curves and where optimal solutions have different stationary or periodic asymptotic behavior.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2001 with number 29.

in new window

Date of creation: 01 Apr 2001
Handle: RePEc:sce:scecf1:29
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:29. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.