IDEAS home Printed from
   My bibliography  Save this paper

A Gibbs Sampler for Mixed Logit Analysis of Differentiated Product Markets Using Aggregate Data


  • Charles J. Romeo


Berry, Levinsohn, and Pakes (1995) developed an estimator for an equilibium model of differentiated products markets using aggregate data, without assuming the existence of a representative agent, or imposing prior restrictions on elasticities. Their estimator though, was computationally burdensome as it required an estimate of aggregate demand in each iteration in search of the mode of their GMM objective function. By imposing additional distributional assumptions for the errors in the demand and supply relations, we show how to define a Gibbs sampler that solves the same problem while avoiding problem of estimating aggregate demand. A comparison of the estimators indicates that this should substantially reduce the computational burden, thereby making study of this important class of problems accessible to a wider group of researchers.

Suggested Citation

  • Charles J. Romeo, 2001. "A Gibbs Sampler for Mixed Logit Analysis of Differentiated Product Markets Using Aggregate Data," Computing in Economics and Finance 2001 106, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:106

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    2. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    3. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    4. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    5. Cheung, Yin-Wong & Friedman, Daniel, 1998. "A comparison of learning and replicator dynamics using experimental data," Journal of Economic Behavior & Organization, Elsevier, vol. 35(3), pages 263-280, April.
    6. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    7. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    8. Allan Timmermann, 1996. "Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend Models with Learning," Review of Economic Studies, Oxford University Press, vol. 63(4), pages 523-557.
    9. de Fontnouvelle, Patrick, 2000. "Information Dynamics In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(02), pages 139-169, June.
    10. Marcet, Albert & Sargent, Thomas J, 1989. "Convergence of Least-Squares Learning in Environments with Hidden State Variables and Private Information," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1306-1322, December.
    11. Droste, Edward & Hommes, Cars & Tuinstra, Jan, 2002. "Endogenous fluctuations under evolutionary pressure in Cournot competition," Games and Economic Behavior, Elsevier, vol. 40(2), pages 232-269, August.
    12. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    13. Hellwig, Martin F., 1980. "On the aggregation of information in competitive markets," Journal of Economic Theory, Elsevier, vol. 22(3), pages 477-498, June.
    14. Sethi, Rajiv & Franke, Reiner, 1995. "Behavioural Heterogeneity under Evolutionary Pressure: Macroeconomic Implications of Costly Optimisation," Economic Journal, Royal Economic Society, vol. 105(430), pages 583-600, May.
    15. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    16. Barberis, Nicholas & Shleifer, Andrei, 2003. "Style investing," Journal of Financial Economics, Elsevier, vol. 68(2), pages 161-199, May.
    17. Routledge, Bryan R, 1999. "Adaptive Learning in Financial Markets," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1165-1202.
    18. Branch, William A. & McGough, Bruce, 2008. "Replicator dynamics in a Cobweb model with rationally heterogeneous expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 224-244, February.
    19. repec:hrv:faseco:30747193 is not listed on IDEAS
    20. Hussman, John P., 1992. "Market efficiency and inefficiency in rational expectations equilibria : Dynamic effects of heterogeneous information and noise," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 655-680.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Gibbs Sampler; Mixed Logit; Differentiated Product Markets;

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:106. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.