IDEAS home Printed from
   My bibliography  Save this paper

Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in the LLS Stock Market Model


  • Sorin Solomon and Moshe Levy


The LLS stock market model (for a review see the book in Academic Press 2000: "Microscopic Simulation of Financial Markets; From Investor Behavior to Market Phenomena" by Levy, Levy and Solomon, ISBN: 0124458904) is a model of heterogeneous quasi-rational investors operating in a complex environment about which they have incomplete information. We review the main features of this model and several of its extensions. We study the effects of investor heterogeneity and show that predation, competition, or symbiosis may occur between different investor populations. The dynamics of the LLS model lead to the empirically observed Pareto wealth distribution. Many properties observed in actual markets appear as natural consequences of the LLS dynamics: truncated Levy distribution of short-term returns, excess volatility, a return autocorrelation "U-shape" pattern, and a positive correlation between volume and absolute returns.

Suggested Citation

  • Sorin Solomon and Moshe Levy, 2001. "Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in the LLS Stock Market Model," Computing in Economics and Finance 2001 10, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:10

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Agent based market simulation;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G - Financial Economics
    • Z - Other Special Topics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.