IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/608.html
   My bibliography  Save this paper

Identification, Estimation and Inference in High-Frequency Event Study Regressions

Author

Listed:

Abstract

We consider identification, estimation and inference in high-frequency event study regressions, which have been used widely in the recent macroeconomics, financial economics and political economy literatures. The high-frequency event study method regresses changes in an outcome variable on a measure of unexpected changes in a policy variable in a narrow time window around an event or a policy announcement (e.g., a 30-minute window around an FOMC announcement). We show that, contrary to popular belief, the narrow size of the window is not sufficient for identification. Rather, the population regression coefficient identifies a causal estimand when (i) the effect of the policy shock on the outcome does not depend on the other variables (separability) and (ii) the surprise component of the news or event dominates all other variables that are present in the event window (relative exogeneity). Technically, the latter condition requires the ratio between the variance of the policy shock and that of the other variables to be infinite in the event window. Under these conditions, we establish the causal meaning of the event study estimand corresponding to the regression coefficient and super-consistency of the event study estimator with rate of convergence faster than the parametric rate. We show the asymptotic normality of the estimator and propose bias-corrected inference. We also provide bounds on the worst-case bias and use them to quantify its impact on the worst-case coverage properties of confidence intervals, as well as to construct a bias-aware critical value. Notably, this standard linear regression estimator is robust to general forms of nonlinearity. We apply our results to Nakamura and Steinsson’s (2018a) analysis of the real economic effects of monetary policy, providing a simple empirical procedure to analyze the extent to which the standard event study estimator adequately estimates causal effects of interest.

Suggested Citation

  • Alessandro Casini & Adam McCloskey, 2025. "Identification, Estimation and Inference in High-Frequency Event Study Regressions," CEIS Research Paper 608, Tor Vergata University, CEIS, revised 28 Jul 2025.
  • Handle: RePEc:rtv:ceisrp:608
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP608.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.