IDEAS home Printed from https://ideas.repec.org/p/rsw/rswwps/rswwps166.html
   My bibliography  Save this paper

Die Zukunft der Statistik: Eine persönliche Betrachtung

Author

Listed:
  • Ulrich Rendtel

Abstract

Anhand eines persönlichen Rückblicks auf die Entwicklungen in den Bereichen Rechnerentwicklung, Datenzugang und Entwicklung von Statistik-Software werden Trends für die zukünftige Entwicklung der Statistik im Bereich der Wirtschafts- und Sozialwissenschaft hergeleitet. Insbesondere werden die Rolle von R, neue Möglichkeiten des Datenzugangs, das Verhältnis zur Amtlichen Statistik und die Einführung neuer Studiengänge im Bereich der Statistik angesprochen. Die Darstellung bezieht sich auf den Bereich der Wirtschafts- und Sozialwissenschaften. In anderen Wissenschaftsbereichen, wo die Statistik als Biometrie, Psychometrie etc. firmiert, mögen die hier dargestellten Entwicklungstendenzen irrelevant sein.

Suggested Citation

  • Ulrich Rendtel, 2010. "Die Zukunft der Statistik: Eine persönliche Betrachtung," Working Paper Series of the German Council for Social and Economic Data 166, German Council for Social and Economic Data (RatSWD).
  • Handle: RePEc:rsw:rswwps:rswwps166
    as

    Download full text from publisher

    File URL: http://www.ratswd.de/download/RatSWD_WP_2010/RatSWD_WP_166.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cheti Nicoletti & Franco Peracchi, 2005. "Survey response and survey characteristics: microlevel evidence from the European Community Household Panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 763-781.
    2. Korinek, Anton & Mistiaen, Johan A. & Ravallion, Martin, 2007. "An econometric method of correcting for unit nonresponse bias in surveys," Journal of Econometrics, Elsevier, vol. 136(1), pages 213-235, January.
    3. James J. Heckman & Paul A. LaFontaine, 2006. "Bias-Corrected Estimates of GED Returns," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 661-700, July.
    4. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
    5. Jungmin Lee & Sokbae Lee, 2012. "Does it Matter WHO Responded to the Survey? Trends in the U.S. Gender Earnings Gap Revisited," ILR Review, Cornell University, ILR School, vol. 65(1), pages 148-160, January.
    6. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 1053-1079.
    7. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    8. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    9. Giuseppe De Luca & Franco Peracchi, 2007. "A sample selection model for unit and item nonresponse in cross-sectional surveys," CEIS Research Paper 95, Tor Vergata University, CEIS.
    10. Hamermesh, Daniel S. & Donald, Stephen G., 2008. "The effect of college curriculum on earnings: An affinity identifier for non-ignorable non-response bias," Journal of Econometrics, Elsevier, vol. 144(2), pages 479-491, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Datenzugang; Statistik-Pakete; R; Amtliche Statistik; Statistik-Studiengänge;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsw:rswwps:rswwps166. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RatSWD). General contact details of provider: http://edirc.repec.org/data/rtswdde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.