IDEAS home Printed from
   My bibliography  Save this paper

A Threshold Stochastic Conditional Duration Model for Financial Transaction Data


  • Zhongxian Men

    (Department of Statistics & Actuarial Science, University of Waterloo, Canada)

  • Tony S. Wirjanto

    () (Department of Statistics & Actuarial Science, University of Waterloo, Canada; School of Accounting and Finance, University of Waterloo, Canada)

  • Adam W. Kolkiewicz

    (Department of Statistics & Actuarial Science, University of Waterloo, Canada)


This paper proposes a threshold stochastic conditional duration (TSCD) model to capture the asymmetric property of financial transactions. The innovation of the observable duration equation is assumed to follow a threshold distribution with two component distributions switching between two regimes. The distributions in different regimes are assumed to be Exponential, Gamma or Weibull. To account for uncertainty in the unobserved threshold level, the observed durations are treated as self-exciting threshold variables. Adopting a Bayesian approach, we develop novel Markov Chain Monte Carlo algorithms to estimate all of the unknown parameters and latent states. To forecast the one-step ahead durations, we employ an auxiliary particle filter where the filter and prediction distributions of the latent states are approximated. The proposed model and the developed MCMC algorithms are illustrated by using both simulated and actual financial transaction data. For model selection, a Bayesian deviance information criterion is calculated to compare our model with other competing models in the literature. Overall, we find that the threshold SCD model performs better than the SCD model when a single positive distribution is assumed for the innovation of the duration equation.

Suggested Citation

  • Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "A Threshold Stochastic Conditional Duration Model for Financial Transaction Data," Working Paper series 30_13, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:30_13

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "Bayesian Inference of Multiscale Stochastic Conditional Duration Models," Working Paper series 63_13, Rimini Centre for Economic Analysis.

    More about this item


    Stochastic conditional duration; Threshold; Markov Chain Monte Carlo; Auxiliary particle filter; Deviance information criterion;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:30_13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.