IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2014-08.html
   My bibliography  Save this paper

Monte Carlo Approximate Tensor Moment Simulations

Author

Listed:
  • Juan C. Arismendi

    (ICMA Centre, Henley Business School, University of Reading)

  • Herbert Kimura

Abstract

An algorithm to generate samples with approximate first-, second-, and third-order moments is presented extending the Cholesky matrix decomposition to a Cholesky tensor decomposition of an arbitrary order. The tensor decomposition of the first-, second-, and third-order objective moments generates a non-linear system of equations. The algorithm solves these equations by numerical methods. The results show that the optimisation algorithm delivers samples with an approximate error of 0.1%-4% between the components of the objective and the sample moments. An application for sensitivity analysis of portfolio risk assessment with Value-at-Risk VaR) is provided. A comparison with previous methods available in the literature suggests that methodology proposed reduces the error of the objective moments in the generated samples

Suggested Citation

  • Juan C. Arismendi & Herbert Kimura, 2014. "Monte Carlo Approximate Tensor Moment Simulations," ICMA Centre Discussion Papers in Finance icma-dp2014-08, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2014-08
    as

    Download full text from publisher

    File URL: http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2491639_code1612482.pdf?abstractid=2491639&mirid=1
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    2. Krzysztof Domino, 2016. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Papers 1605.09181, arXiv.org, revised Aug 2016.
    3. Domino, Krzysztof, 2017. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 267-276.

    More about this item

    Keywords

    Monte Carlo Simulation; Higher-order Moments; Exact Moments Simulation; Stress-testing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2014-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.