IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202530.html
   My bibliography  Save this paper

Does Mining Activity Drive Crash Risks in Cryptocurrency Markets? An Application to Bitcoin

Author

Listed:
  • Matteo Bonato

    (Department of Economics and Econometrics, University of Johannesburg, Auckland Park, South Africa; IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France)

  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1102, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Abeeb Olaniran

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

This paper explores the role of mining activity, proxied by growth rates of electricity consumption and cost of mining, as a driver of pricing inefficiencies in cryptocurrencies. Utilizing alternative measures of crash risk proxied by the realized negative coefficient of skewness and realized down-to-up volatility, derived based on 5-minute intraday Bitcoin data, nonparametric causality-in-quantiles tests, along with sign analysis, captured by the estimates of partial average derivatives, provide evidence that mining activity can, in general, predict an increase in the entire conditional distribution of crash risk, with the strongest impact associated over the normal (median) to moderately high (upper quantiles) levels of risk. Despite the emergence of these assets in international transactions and as an investment vehicle, our results suggest that decentralized mining process can contribute to inefficiencies in the pricing of cryptocurrencies, putting further doubt into the role of these assets as a medium of exchange, alternative to conventional assets.

Suggested Citation

  • Matteo Bonato & Riza Demirer & Rangan Gupta & Abeeb Olaniran, 2025. "Does Mining Activity Drive Crash Risks in Cryptocurrency Markets? An Application to Bitcoin," Working Papers 202530, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202530
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. repec:rim:rimwps:18-14 is not listed on IDEAS
    2. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    3. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    4. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Marco Lambrecht & Andis Sofianos & Yilong Xu, 2025. "Does Mining Fuel Bubbles? An Experimental Study on Cryptocurrency Markets," Management Science, INFORMS, vol. 71(3), pages 1865-1888, March.
    7. Garnier, Josselin & Solna, Knut, 2019. "Chaos and order in the bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 708-721.
    8. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    9. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    10. Josselin Garnier & Knut Solna, 2018. "Chaos and Order in the Bitcoin Market," Papers 1809.08403, arXiv.org, revised Apr 2019.
    11. Huang, Zih-Chun & Sangiorgi, Ivan & Urquhart, Andrew, 2024. "Forecasting Bitcoin volatility using machine learning techniques," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 97(C).
    12. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    13. Yizhi Wang & Brian Lucey & Samuel Alexandre Vigne & Larisa Yarovaya, 2022. "An index of cryptocurrency environmental attention (ICEA)," China Finance Review International, Emerald Group Publishing Limited, vol. 12(3), pages 378-414, January.
    14. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    15. Vaiva Pakštaitė & Ernestas Filatovas & Mindaugas Juodis & Remigijus Paulavičius, 2025. "Bitcoin Price Regime Shifts: A Bayesian MCMC and Hidden Markov Model Analysis of Macroeconomic Influence," Mathematics, MDPI, vol. 13(10), pages 1-25, May.
    16. Anusha Chari & Karlye Dilts Stedman & Christian Lundblad, 2023. "Risk-On Risk-Off: A Multifaceted Approach to Measuring Global Investor Risk Aversion," NBER Working Papers 31907, National Bureau of Economic Research, Inc.
    17. Alessandra Cretarola & Gianna Figà-Talamanca, 2021. "Detecting bubbles in Bitcoin price dynamics via market exuberance," Annals of Operations Research, Springer, vol. 299(1), pages 459-479, April.
    18. Elie Bouri & Rangan Gupta & Chi keung marco Lau & David Roubaud, 2021. "Risk aversion and Bitcoin returns in extreme quantiles," Economics Bulletin, AccessEcon, vol. 41(3), pages 1374-1386.
    19. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Ho Kwon, 2021. "On the factors of Bitcoin’s value at risk," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    2. Neto, David, 2021. "Are Google searches making the Bitcoin market run amok? A tail event analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    4. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    5. Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024. "Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
    6. repec:hum:wpaper:sfb649dp2016-057 is not listed on IDEAS
    7. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    8. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    9. Kwon, Ji Ho, 2020. "Tail behavior of Bitcoin, the dollar, gold and the stock market index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    10. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto Calogero, 2017. "Estimation and model-based combination of causality networks," SAFE Working Paper Series 165, Leibniz Institute for Financial Research SAFE.
    11. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.
    12. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    13. Xin Sheng & Rangan Gupta & Qiang Ji, 2023. "The Effects of Disaggregate Oil Shocks on the Aggregate Expected Skewness of the United States," Risks, MDPI, vol. 11(11), pages 1-9, October.
    14. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    15. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    16. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    17. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    18. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    19. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    20. Marrocu, Emanuela & Paci, Raffaele & Zara, Andrea, 2015. "Micro-economic determinants of tourist expenditure: A quantile regression approach," Tourism Management, Elsevier, vol. 50(C), pages 13-30.
    21. Catania, Leopoldo & Luati, Alessandra, 2025. "Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall," Econometrics and Statistics, Elsevier, vol. 33(C), pages 23-34.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.