IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

CES Function, Generalized Mean and Human Poverty Index: Exploring Some Links

  • Pillai N, Vijayamohanan
Registered author(s):

    The Sennian capability approach has facilitated to capture poverty in its multi-dimensional incidence and thus to raise a new aggregate poverty index – the UNDP’s Human Poverty Index (HPI). The UNDP has found power mean of order α > 1 as possessing some of the most desirable properties in describing the distribution of deprivation dimensions and hence as the most appropriate aggregate index of multi-dimensional deprivation. The UNDP elevates power mean of order α > 1 (PM) in comparison with arithmetic mean (AM) commonly used for averaging, leaving out others. It would hence be worthwhile to look into the links among the means, both the known and the potential ones, and their strengths and weaknesses in terms of their properties in comparison with each other. The present paper is a preliminary attempt at this. We find that the means we commonly use, the AM, the geometric mean (GM) and the harmonic mean (HM), along with the PM, are special cases of the CES function. We acknowledge the possibility of an inverse CES function, and hence, that of an inverse power mean (IPM) also. Among these means, the AM is an average, typical of all the components, but its infinite elasticity of substitution renders it less desirable. To the extent that we need an average typical of the components, we seek for one that is closer to the AM, so that this second best choice will have the minimum deviations next to the AM. And we find this basic criterion is satisfied by the IPM only. Hence, while the PM captures the multi-dimensional deprivation, its inverse, the IPM, seems to offer a multi-dimensional development index.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://mpra.ub.uni-muenchen.de/6951/1/MPRA_paper_6951.pdf
    File Function: original version
    Download Restriction: no

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6951.

    as
    in new window

    Length:
    Date of creation: 01 Feb 2008
    Date of revision:
    Handle: RePEc:pra:mprapa:6951
    Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: http://mpra.ub.uni-muenchen.de

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6951. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.