IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Schwarzschild Geometry from Exact Solution of Einstein Equation

Listed author(s):
  • Mohajan, Haradhan

An exact solution of Einstein equation is easier than actual solution. The Schwarzschild metric is established on the basis of Einstein’s exact solution and it is also a static and stationary solution. The Schwarzschild solution expresses the geometry of a spherically symmetric massive body’s (star) exterior solution. It predicts small observable departures from the Newtonian gravity. It also represents theory of black holes when sufficiently massive stars unable to support themselves against the pull of self gravity and must undergo a complete gravitational collapse when they have exhausted their internal nuclear fuel. Various sides of Schwarzschild geometry, such as, Kruskal–Szekeres extension, space-time singularities and black hole formation, are discussed with simple but detail calculations. The black hole is a region from which no causal signals can reach to the external observers and it contains a space-time singularity hidden within the event horizon.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 50795.

in new window

Date of creation: 11 Aug 2013
Date of revision: 16 Oct 2013
Handle: RePEc:pra:mprapa:50795
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:50795. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.