IDEAS home Printed from
   My bibliography  Save this paper

Genetic algorithms in forecasting of Internet shops demand


  • Chodak, Grzegorz


The general aim of this article is to present genetic algorithms as a tool, that can be used in de-mand forecasting in internet shops. First part of article identities factors, which have to be taken into consideration during analysing demand in internet shops, e.g. dispersion of demand, delivery time in-fluence and different e-marketing factors. Specific form of used demand function is shown in the next section of the article. Then genetic algorithm is defined by its genetic operators acting on bit strings (examples of the operators are: crossover, inversion, and mutation) and its method of credit allocation (fitness evaluation and selection). Next the method of identification of the function parameters using genetic algorithms is shown. The next part of article shows appliance of presented genetic algorithm. The advantages and disadvantages of proposed method are shortly discussed in summary.

Suggested Citation

  • Chodak, Grzegorz, 2009. "Genetic algorithms in forecasting of Internet shops demand," MPRA Paper 34034, University Library of Munich, Germany, revised 2009.
  • Handle: RePEc:pra:mprapa:34034

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Chodak, Grzegorz & Kwaśnicki, Witold, 2000. "Genetic algorithms in seasonal demand forecasting," MPRA Paper 34099, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chodak, Grzegorz & Latus, Łukasz, 2011. "Metody prognozowania popytu i zarządzanie gospodarką magazynową w polskich sklepach internetowych – wyniki badań [Methods of Demand Forecasting and Inventory Management in Polish Internet Shops – R," MPRA Paper 36713, University Library of Munich, Germany.

    More about this item


    abc analysis; inventory control; internet shop; e-commerce;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34034. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.