IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A quantifying method of microinvestment optimum

Listed author(s):
  • Albu, Lucian-Liviu
  • Camasoiu, Ion
  • Georgescu, George

Amid the controversies around the optimisation criteria and the objective functions when applying mathematical methods in economics, we proposed a method of quantifying a multi-criteria optimum, called critical distance method. The demonstration of this method is exemplified by assessing the investment optimum at microeconomic level (project or company portfolio choice). A hyperbolic paraboloid function of three variables (the recovery time, the investment value and the unit cost) representing a surface of the second degree has been defined. The intersection of the hyperbolic parabola planes identifies the point where the three considered variables have the same value, signifying an equal importance attached to them and revealing the optimum level of their interaction. The distance from this critical point to the origin represents, in fact, the criterion according to which one could choose the most efficient investment alternative. In our opinion, the proposed method could be extended to the study of any economic process.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 14928.

in new window

Date of creation: Jan 1985
Handle: RePEc:pra:mprapa:14928
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14928. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.