IDEAS home Printed from
   My bibliography  Save this paper

A Strong Invariance Principle for Associated Random Fields


  • R.M. Balan

    () (Department of Mathematics and Statistics, University of Ottawa,
    Department of Mathematics, Nanjing University)


In this paper we generalize Yu’s strong invariance principle for associated sequences to the multi-parameter case, under the assumption that the covariance coefficient u(n) decays exponentially as n -> (infinity symbol). The main tools will be the Berkes-Morrow multi-parameter blocking technique, the Csörgö-Révész quantile transform method and the Bulinski rate of convergence in the CLT for associated random fields.

Suggested Citation

  • R.M. Balan, 2003. "A Strong Invariance Principle for Associated Random Fields," RePAd Working Paper Series lrsp-TRS390, Département des sciences administratives, UQO.
  • Handle: RePEc:pqs:wpaper:0172005

    Download full text from publisher

    File URL:
    File Function: First version, 2003
    Download Restriction: no

    References listed on IDEAS

    1. Dabrowski, AndréRobert, 1985. "A functional law of the iterated logarithm for associated sequences," Statistics & Probability Letters, Elsevier, vol. 3(4), pages 209-212, July.
    2. Burton, Robert M. & Dabrowski, AndréRobert & Dehling, Herold, 1986. "An invariance principle for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 301-306, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    strong invariance principle; associated random fields; blocking technique; quantile transform.;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0172005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Calmes). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.