IDEAS home Printed from
   My bibliography  Save this article

Kaplan-Meier Estimator under Association


  • Cai, Zongwu
  • Roussas, George G.


Consider a long term study, where a series of possibly censored failure times is observed. Suppose the failure times have a common marginal distribution functionF, but they exhibit a mode of dependence characterized by positive or negative association. Under suitable regularity conditions, it is shown that the Kaplan-Meier estimatorFnofFis uniformly strongly consistent; rates for the convergence are also provided. Similar results are established for the empirical cumulative hazard rate function involved. Furthermore, a stochastic process generated byFnis shown to be weakly convergent to an appropriate Gaussian process. Finally, an estimator of the limiting variance of the Kaplan-Meier estimator is proposed and it is shown to be weakly convergent.

Suggested Citation

  • Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:318-348

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bagai, Isha & Prakasa Rao, B. L. S., 1991. "Estimation of the survival function for stationary associated processes," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 385-391, November.
    2. Stute, Winfried, 1994. "Convergence of the Kaplan-Meier estimator in weighted sup-norms," Statistics & Probability Letters, Elsevier, vol. 20(3), pages 219-223, June.
    3. Roussas, G. G., 1994. "Asymptotic Normality of Random Fields of Positively or Negatively Associated Processes," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 152-173, July.
    4. Roussas, George G., 1991. "Kernel estimates under association: strong uniform consistency," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 393-403, November.
    5. Ying, Z. & Wei, L. J., 1994. "The Kaplan-Meier Estimate for Dependent Failure Time Observations," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 17-29, July.
    6. Burton, Robert M. & Dabrowski, AndréRobert & Dehling, Herold, 1986. "An invariance principle for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 301-306, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Nikolai Leonenko & Ludmila Sakhno, 2001. "On the Kaplan–Meier Estimator of Long-Range Dependent Sequences," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 17-40, January.
    2. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    3. Ioannides, D. A. & Roussas, G. G., 1999. "Exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 423-431, May.
    4. Yinxiao Huang & Stanislav Volgushev & Xiaofeng Shao, 2015. "On Self-Normalization For Censored Dependent Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 109-124, January.
    5. Masry, Elias, 2002. "Multivariate probability density estimation for associated processes: strong consistency and rates," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 205-219, June.
    6. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    7. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Density and Hazard Rate Estimation for Censored and ?-mixing Data Using Gamma Kernels," Cahiers de recherche 06-16, HEC Montréal, Institut d'économie appliquée.
    8. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    9. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    10. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:318-348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.