IDEAS home Printed from
   My bibliography  Save this paper

Hierarchical equilibria of branching populations


  • D.A. Dawson

    () (School of Mathematics and Statistics, Carleton University)

  • L.G. Gorostiza

    () (Centro de Investigacion y de Estudios Avanzados)

  • A. Wakolbinger

    () (Frankfurt am Main)


The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group (Omega)N consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit N -> (infinity symbol) (called the hierarchical mean field limit), the equilibrium aggregated populations in a nested sequence of balls (symbole)(N) of hierarchical radius (symbol) converge to a backward Markov chain on R+. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.

Suggested Citation

  • D.A. Dawson & L.G. Gorostiza & A. Wakolbinger, 2000. "Hierarchical equilibria of branching populations," RePAd Working Paper Series lrsp-TRS389, Département des sciences administratives, UQO.
  • Handle: RePEc:pqs:wpaper:0162005

    Download full text from publisher

    File URL:
    File Function: First version, 2000
    Download Restriction: no

    References listed on IDEAS

    1. Durrett, R., 1978. "The genealogy of critical branching processes," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 101-116, November.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Multilevel branching; hierarchical mean-field limit; strong transience; genealogy.;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0162005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Calmes). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.