IDEAS home Printed from
   My bibliography  Save this paper

A Tale of 3 Cities: Model Selection in Over-, Exact, and Under-specified Equations


  • Jennifer Castle
  • David Hendry


Model selection from a general unrestricted model (GUM) can potentially confront three very different environments: over-, exact, and under-specification of the data generation process (DGP). In the first, and most-studied setting, the DGP is nested in the GUM, and the main role of general-to-specific (Gets) selection is to eliminate the irrelevant variables while retaining the relevant. In an exact specification, the theory formulation is precisely correct and can always be retained by 'forcing' during selection, but is nevertheless embedded in a broader model where possible omissions, breaks, non-linearity, or data contamination are checked. The most realistic case is where some aspects of the relevant DGP are correctly included, but some are omitted, leading to under-specification. We review the analysis of model selection procedures which allow for many relevant effects, but inadvertently omit others, yet irrelevant variables are also included in the GUM, and exploit the ability of automatic procedures to handle more variables than observations, and consequentially tackle perfect collinearity. Considering all of the possibilities - where it is not known which one obtains in practice - reveals that model selection can excel relative to just fitting a prior specification, yet has very low costs when an exact specification is correctly postulated initially.

Suggested Citation

  • Jennifer Castle & David Hendry, 2011. "A Tale of 3 Cities: Model Selection in Over-, Exact, and Under-specified Equations," Economics Series Working Papers 523, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:523

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Model selection; congruence; mis-specification; impulse-indicator saturation; Autometrics;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:523. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Pouliquen) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.