Estimation avec le score de propension sous R Abstract : Ce document présente les principales méthodes économétriques utilisant le score de propension pour comparer deux groupes en ajustant des effets de compositions observables. Plus précisément, il se veut un complément pratique au document méthodologique de Givord (2010) sur les méthodes d’appariement, de stratification et de pondération par l’inverse de la probabilité de traitement. Après avoir rappelé comment estimer le score de propension, et les indicateurs statistiques classiquement utilisés pour vérifier sa propriété équilibrante, un chapitre dédié à chaque méthode rappelle la démarche correspondante, les principales recommandations pratiques formulées par les nombreux travaux académiques, et expose leur implémentation avec le logiciel R
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simon Bunel & Benjamin Hadjibeyli, 2021. "An Evaluation of the Innovation Tax Credit," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 526-527, pages 113-135.
More about this item
Keywords
Évaluation des politiques publiques; score de propension; appariement; stratification; pondération;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:doctra:m2018-01. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INSEE (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.