IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/4958.html
   My bibliography  Save this paper

Hedging Options in a GARCH Environment: Testing the Term Structure of Stochastic Volatility Models

Author

Listed:
  • Robert F. Engle
  • Joshua Rosenberg

Abstract

This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P 500 index volatility. Volatility models are compared by their ability to hedge options positions sensitive to the term structure of volatility. Overall, the most effective hedge is a Black-Scholes (BS) delta-gamma hedge, while the BS delta-vega hedge is the least effective. The most successful volatility hedge is GARCH components delta-gamma, suggesting that the GARCH components estimate of the term structure of volatility is most accurate. The success of the BS delta-gamma hedge may be due to mispricing in the options market over the sample period.

Suggested Citation

  • Robert F. Engle & Joshua Rosenberg, 1994. "Hedging Options in a GARCH Environment: Testing the Term Structure of Stochastic Volatility Models," NBER Working Papers 4958, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:4958
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w4958.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert F. Engle & Joshua V. Rosenberg, 1995. "GARCH Gamma," NBER Working Papers 5128, National Bureau of Economic Research, Inc.
    2. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    3. Shih-Feng Huang & Meihui Guo, 2014. "Model risk of the implied GARCH-normal model," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2215-2224, December.
    4. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    5. Jacobi, Frank, 2005. "ARCH-Prozesse und ihre Erweiterungen - Eine empirische Untersuchung für Finanzmarktzeitreihen -," Arbeitspapiere des Instituts für Statistik und Ökonometrie 31, Johannes Gutenberg-Universität Mainz, Institut für Statistik und Ökonometrie.
    6. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    8. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:4958. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.