IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/33564.html
   My bibliography  Save this paper

Methane Abatement Costs in the Oil and Gas Industry: Survey and Synthesis

Author

Listed:
  • Joseph E. Aldy
  • Forest L. Reinhardt
  • Robert N. Stavins

Abstract

There is growing recognition of the relative importance of anthropogenic emissions of methane as a contributor to global climate change. An important source of such emissions in some countries, including the United States, is the oil and gas (O&G) sector. This points to the importance of developing understanding of the marginal abatement cost functions for methane emissions reductions. Scholars have employed a diverse set of methodologies to estimate abatement costs, including engineering cost models, econometric analysis of natural gas markets, and statistical retrospective analysis of state-level regulation. We critically examine these approaches and synthesize their results. We find significant potential for low-cost methane abatement in the O&G sector in the United States and elsewhere, although claims of widespread negative abatement cost opportunities should be taken with a grain of salt. We also find that the potential for low-cost abatement is not without limit. Whereas it appears that cutting methane emissions in half would be relatively inexpensive, a sharp uptick in marginal abatement cost may occur when reductions exceed 60 to 80 percent below baseline levels. This threshold may change over time with technological advances in remote sensing, which can reduce abatement costs at various levels of ambition.

Suggested Citation

  • Joseph E. Aldy & Forest L. Reinhardt & Robert N. Stavins, 2025. "Methane Abatement Costs in the Oil and Gas Industry: Survey and Synthesis," NBER Working Papers 33564, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:33564
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w33564.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kimberly A. Clausing & Luis Garicano & Catherine Wolfram, 2023. "How an international agreement on methane emissions can pave the way for enhanced global cooperation on climate change," Policy Briefs PB23-7, Peterson Institute for International Economics.
    2. Lade, Gabriel E. & Rudik, Ivan, 2020. "Costs of inefficient regulation: Evidence from the Bakken," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
    3. John E. T. Bistline & Neil R. Mehrotra & Catherine Wolfram, 2023. "Economic Implications of the Climate Provisions of the Inflation Reduction Act," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 54(1 (Spring), pages 77-182.
    4. K. Casey Delhotal, Francisco C. de la Chesnaye, Ann Gardiner, Judith Bates, and Alexei Sankovski, 2006. "Mitigation of Methane and Nitrous Oxide Emissions from Waste, Energy and Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 45-62.
    5. K.Casey Delhotal & Francisco C. de la Chesnaye & Ann Gardiner & Judith Bates & Alexei Sankovski, 2006. "Mitigation of Methane and Nitrous Oxide Emissions from Waste, Energy and Industry," The Energy Journal, , vol. 27(3_suppl), pages 45-62, December.
    6. Levi Marks, 2022. "The Abatement Cost of Methane Emissions from Natural Gas Production," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(2), pages 165-198.
    7. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    8. repec:osf:socarx:3e9xk_v1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Fitzgerald, 2024. "Regulatory capture in a resource boom," Public Choice, Springer, vol. 198(1), pages 93-127, January.
    2. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2012. "Anatomy of a paradox: Management practices, organizational structure and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 208-223.
    3. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    4. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Saikku, Laura & Rautiainen, Aapo & Kauppi, Pekka E., 2008. "The sustainability challenge of meeting carbon dioxide targets in Europe by 2020," Energy Policy, Elsevier, vol. 36(2), pages 730-742, February.
    6. LOFGREN Asa & MILLOCK Katrin & NAUGES Céline, 2007. "Using Ex Post Data to Estimate the Hurdle Rate of Abatement Investments - An application to the Swedish Pulp and Paper Industry and Energy Sector," LERNA Working Papers 07.06.227, LERNA, University of Toulouse.
    7. Louis-Gaëtan Giraudet & Anna Petronevich & Laurent Faucheux, 2018. "How do lenders price energy efficiency? Evidence from posted interest rates for unsecured credit in France [Comment les créditeurs valorisent-ils l'efficacité énergétique? Une analyse des taux d'in," Working Papers hal-01890636, HAL.
    8. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    9. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    10. Kube, Roland & von Graevenitz, Kathrine & Löschel, Andreas & Massier, Philipp, 2019. "Do voluntary environmental programs reduce emissions? EMAS in the German manufacturing sector," Energy Economics, Elsevier, vol. 84(S1).
    11. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    13. Maya M. Papineau, 2015. "Setting the Standard: Commercial Electricity Consumption Responses to Energy Codes," Carleton Economic Papers 15-05, Carleton University, Department of Economics.
    14. Belaïd, Fateh & Ranjbar, Zeinab & Massié, Camille, 2021. "Exploring the cost-effectiveness of energy efficiency implementation measures in the residential sector," Energy Policy, Elsevier, vol. 150(C).
    15. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    16. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
    17. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
    18. Fries, Steven, 2023. "Sequencing decarbonization policies to manage their macroeconomic impacts," INET Oxford Working Papers 2023-26, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    19. Klemick, Heather & Kopits, Elizabeth & Wolverton, Ann, 2017. "Data Center Energy Efficiency Investments: Qualitative Evidence from Focus Groups and Interviews," National Center for Environmental Economics-NCEE Working Papers 280941, United States Environmental Protection Agency (EPA).
    20. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:33564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.