IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/29338.html

Bayesian Learning

Author

Listed:
  • Isaac Baley
  • Laura Veldkamp

Abstract

We survey work using Bayesian learning in macroeconomics, highlighting common themes and new directions. First, we present many of the common types of learning problems agents face---signal extraction problems---and trace out their effects on macro aggregates, in different strategic settings. Then we review different perspectives on how agents get their information. Models differ in their motives for information acquisition and the cost of information, or learning technology. Finally, we survey the growing literature on the data economy, where economic activity generates data and the information in data feeds back to affect economic activity.

Suggested Citation

  • Isaac Baley & Laura Veldkamp, 2021. "Bayesian Learning," NBER Working Papers 29338, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:29338
    Note: AP EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w29338.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • E0 - Macroeconomics and Monetary Economics - - General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:29338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.