IDEAS home Printed from
   My bibliography  Save this paper

Mixed Model-Based Hazard Estimation


  • Cai, T.
  • Hyndman, R.J.
  • Wand, M.P.


We propose a new method for estimation of the hazard function from a set of censored failure time data, with a view to extending the general approach to more complicated models. The approach is based on a mixed model representation of penalized spline hazard estimators. One payoff is the automation of the smoothing parameter choice through restricted maximum likelihood. Another is the option to use standard mixed model software for automatic hazard estimation.

Suggested Citation

  • Cai, T. & Hyndman, R.J. & Wand, M.P., 2000. "Mixed Model-Based Hazard Estimation," Monash Econometrics and Business Statistics Working Papers 11/00, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2000-11

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Bruce Bloxom, 1985. "A constrained spline estimator of a hazard function," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 301-321, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kauermann, Goran, 2005. "Penalized spline smoothing in multivariable survival models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 169-186, April.
    2. Kneib, Thomas, 2006. "Mixed model-based inference in geoadditive hazard regression for interval-censored survival times," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 777-792, November.
    3. Kauermann, Goran & Khomski, Pavel, 2006. "Additive two-way hazards model with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1944-1956, December.
    4. Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.

    More about this item


    Non-parametric regression; Restricted maximum likelihood; Variance component; Survival analysis.;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2000-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.