IDEAS home Printed from https://ideas.repec.org/p/mod/depeco/0669.html
   My bibliography  Save this paper

Assessing the information content of option-based volatility forecasts using fuzzy regression methods

Author

Listed:
  • Silvia Muzzioli

    ()

  • Bernard De Baets

    ()

Abstract

Volatility is a key variable for portfolio selection models, option pricing models and risk management techniques. Volatility can be estimated and forecasted by using either historical information or option prices. The present paper focuses on option-based volatility forecasts for three main reasons. First, for the forward looking nature of option-based forecasts (as opposed to the backward looking nature of historical information); second, for the average superiority, documented in the literature, of option-based estimates in forecasting future realized volatility; third, for the widespread use of option prices in the computation of the most important market volatility indexes (see e.g. the VIX index for the Chicago Board Options Exchange). The aim of this paper is to assess the information content of future realised volatility of different option-based volatility forecasts, through the use of fuzzy regression methods. The latter methods offer a suitable tool to handle both imprecision in measurements and fuzziness of the relationship among variables. Therefore, they are particularly useful for volatility forecasting, since the variable of interest (realised volatility) is unobservable and a proxy for it is used. Moreover, measurement errors in both realised volatility and volatility forecasts may affect the regression results. Fuzzy regression methods have not yet been used in volatility forecasting. Our case study is based on intra-daily data on the DAX-index options market.

Suggested Citation

  • Silvia Muzzioli & Bernard De Baets, 2011. "Assessing the information content of option-based volatility forecasts using fuzzy regression methods," Department of Economics 0669, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
  • Handle: RePEc:mod:depeco:0669
    as

    Download full text from publisher

    File URL: http://www.dep.unimore.it/materiali_discussione/0669.pdf
    Download Restriction: no

    More about this item

    Keywords

    Fuzzy regression methods; linear programming; least squares; volatility forecasting.;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:depeco:0669. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sara Colombini). General contact details of provider: http://edirc.repec.org/data/demodit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.