IDEAS home Printed from
   My bibliography  Save this paper

Exact and Heuristic Methods for the Weapon Target Assignment Problem


  • Ahuja, Ravindra
  • Kumar, Arvind
  • Jha, Krishna
  • Orlin, James


The Weapon Target Assignment (WTA) problem is a fundamental problem arising in defense-related applications of operations research. This problem consists of optimally assigning n weapons to m targets so that the total expected survival value of the targets after all the engagements is minimum. The WTA problem can be formulated as a nonlinear integer programming problem and is known to be NP-complete. There do not exist any exact methods for the WTA problem which can solve even small size problems (for example, with 20 weapons and 20 targets). Though several heuristic methods have been proposed to solve the WTA problem, due to the absence of exact methods, no estimates are available on the quality of solutions produced by such heuristics. In this paper, we suggest linear programming, integer programming, and network flow based lower bounding methods using which we obtain several branch and bound algorithms for the WTA problem. We also propose a network flow based construction heuristic and a very large-scale neighborhood (VLSN) search algorithm. We present computational results of our algorithms which indicate that we can solve moderately large size instances (up to 80 weapons and 80 targets) of the WTA problem optimally and obtain almost optimal solutions of fairly large instances (up to 200 weapons and 200 targets) within a few seconds.

Suggested Citation

  • Ahuja, Ravindra & Kumar, Arvind & Jha, Krishna & Orlin, James, 2004. "Exact and Heuristic Methods for the Weapon Target Assignment Problem," Working papers 4464-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:7388

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Weapon Target Assignment; WTA; very large-scale neighborhood search algorithm;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:7388. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.