IDEAS home Printed from https://ideas.repec.org/p/mit/sloanp/7379.html
   My bibliography  Save this paper

Feedback Based Architecture for Reading Check Courtesy Amounts

Author

Listed:
  • Palacios, Rafael
  • Gupta, Amar
  • Wang, Patrick

Abstract

In recent years, a number of large-scale applications continue to rely heavily on the use of paper as the dominant medium, either on intra-organization basis or on inter-organization basis, including paper intensive applications in the check processing application. In many countries, the value of each check is read by human eyes before the check is physically transported, in stages, from the point it was presented to the location of the branch of the bank which issued the blank check to the concerned account holder. Such process of manual reading of each check involves significant time and cost. In this research, a new approach is introduced to read the numerical amount field on the check; also known as the courtesy amount field. In the case of check processing, the segmentation of unconstrained strings into individual digits is a challenging task because one needs to accommodate special cases involving: connected or overlapping digits, broken digits, and digits physically connected to a piece of stroke that belongs to a neighboring digit. The system described in this paper involves three stages: segmentation, normalization, and the recognition of each character using a neural network classifier, with results better than many other methods in the literaratur

Suggested Citation

  • Palacios, Rafael & Gupta, Amar & Wang, Patrick, 2004. "Feedback Based Architecture for Reading Check Courtesy Amounts," Working papers 4364-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:7379
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1721.1/7379
    Download Restriction: no

    More about this item

    Keywords

    Character recognition; bank check recognition; segmentation; courtesy amount; scanning; preprocessing; accuracy rate; post processing; feedback; architecture;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:7379. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: http://edirc.repec.org/data/ssmitus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.