IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimal Dimension of Transition Probability Matrices for Markov Chain Bootstrapping

Listed author(s):
  • Roy Cerqueti

    (Univesity of Macerata)

  • Paolo Falbo

    (University of Brescia)

  • Cristian Pelizzari

    (University of Brescia)

While the large portion of the literature on Markov chain (possibly of order higher than one) bootstrap methods has focused on the correct estimation of the transition probabilities, little or no attention has been devoted to the problem of estimating the dimension of the transition probability matrix. Indeed, it is usual to assume that the Markov chain has a one-step memory property and that the state space could not to be clustered, and coincides with the distinct observed values. In this paper we question the opportunity of such a standard approach. In particular we advance a method to jointly estimate the order of the Markov chain and identify a suitable clustering of the states. Indeed in several real life applications the "memory" of many processes extends well over the last observation; in those cases a correct representation of past trajectories requires a significantly richer set than the state space. On the contrary it can sometimes happen that some distinct values do not correspond to really "different states of a process; this is a common conclusion whenever, for example, a process assuming two distinct values in t is not affected in its distribution in t+1. Such a situation would suggest to reduce the dimension of the transition probability matrix. Our methods are based on solving two optimization problems. More specifically we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping: preserving the similarity between the observed and the bootstrap series and reducing the probabilities of getting a perfect replication of the original sample. A brief axiomatic discussion is developed to define the desirable properties for such optimal criteria. Two numerical examples are presented to illustrate the method.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Macerata University, Department of Finance and Economic Sciences in its series Working Papers with number 53-2009.

in new window

Date of creation: Apr 2009
Date of revision: Apr 2009
Handle: RePEc:mcr:wpdief:wpaper00053
Contact details of provider: Postal:
Via Crescimbeni, 20 -62100 Macerata

Phone: 0733.258.201
Fax: 0733.258.205
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mcr:wpdief:wpaper00053. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Silvana Tartufoli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.