IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/9113.html
   My bibliography  Save this paper

Modele D'Explication De Flux A Composantes D'Erreurs Spatialement Correlees

Author

Listed:
  • Bolduc, D.
  • Laferriere, R.
  • Santarossa, G.

Abstract

In this study, we propose a generalization of the error component formulation to model the correlation among the errors of a regression based on travel flow data. The error term is broken down into a sum of one component related to the origin zone, one component related to the destination zone and a remainder. Each component is assumed to result from a first-order spatial autoregressive generating process. An efficient estimation approach based on maximum likelihood which addresses the practical implementation of such a model with a large sample size is suggested. Dans cette étude, nous proposons une généralisation de la formulation à composantes d’erreurs qui permet de représenter différents effets explicatifs de la présence de corrélation dans les erreurs de modèles de régression avec données de flux. Selon la formulation proposée, le terme d’erreur se décompose en une somme d’une erreur relative à la zone d’origine, une erreur relative à la zone de destination et une erreur associée au flux. Chaque composante d’erreur est issue d’un processus générateur auto-régressif spatial d’ordre 1. L’estimation des paramètres du modèle est basée sur la méthode du maximum de vraisemblance. La méthodologie proposée a l’avantage de demeurer applicable même dans le contexte d’échantillons de grande taille.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bolduc, D. & Laferriere, R. & Santarossa, G., 1991. "Modele D'Explication De Flux A Composantes D'Erreurs Spatialement Correlees," Cahiers de recherche 9113, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:9113
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bolduc, D. & Dagenais, M.G. & Gaudry, M.J.I., 1988. "Spatially Autocorrelated Errors In Origin-Destination Models: A New Specification Applied To Urban Travel Demand In Winnipeg," Papers 8806, Laval - Recherche en Politique Economique.
    2. Blommestein, Hans J., 1983. "Specification and estimation of spatial econometric models : A discussion of alternative strategies for spatial economic modelling," Regional Science and Urban Economics, Elsevier, vol. 13(2), pages 251-270, May.
    3. A S Brandsma & R H Ketellapper, 1979. "A Biparametric Approach to Spatial Autocorrelation," Environment and Planning A, , vol. 11(1), pages 51-58, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    2. Burridge, Peter, 2011. "A research agenda on general-to-specific spatial model search," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 21, pages 71-90.
    3. repec:asg:wpaper:1013 is not listed on IDEAS
    4. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    5. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    6. Mur, Jesús & Angulo, Ana, 2009. "Model selection strategies in a spatial setting: Some additional results," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 200-213, March.
    7. J. Paul Elhorst & Katarina Zigova, 2011. "Evidence of Competition in Research Activity among Economic Department using Spatial Econometric Techniques," Working Paper Series of the Department of Economics, University of Konstanz 2011-04, Department of Economics, University of Konstanz.
    8. Jesus Mur & Ana Angulo, 2005. "A closer look at the Spatial Durbin Model," ERSA conference papers ersa05p392, European Regional Science Association.
    9. Manfred M. Fischer & Daniel A. Griffith, 2008. "Modeling Spatial Autocorrelation In Spatial Interaction Data: An Application To Patent Citation Data In The European Union," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 969-989, December.
    10. Harry H. Kelejian & Ingmar R. Prucha, 1997. "Estimation of Spatial Regression Models with Autoregressive Errors by Two-Stage Least Squares Procedures: A Serious Problem," International Regional Science Review, , vol. 20(1-2), pages 103-111, April.
    11. LE GALLO, Julie, 2000. "Econométrie spatiale 1 -Autocorrélation spatiale," LATEC - Document de travail - Economie (1991-2003) 2000-05, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    12. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    13. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    14. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    15. Georgios Fotopoulos & Helen Louri, 2011. "On the Geography of International Banking: a case for spatial econometrics?," ERSA conference papers ersa10p1081, European Regional Science Association.
    16. Vermot-Desroches, Bernard, 1993. "L’économie des transports, un champ novateur, intégrateur et ambitieux," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 213-225, septembre.
    17. López-Hernández, Fernando A., 2013. "Second-order polynomial spatial error model. Global and local spatial dependence in unemployment in Andalusia," Economic Modelling, Elsevier, vol. 33(C), pages 270-279.
    18. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto Calogero, 2017. "Estimation and model-based combination of causality networks," SAFE Working Paper Series 165, Leibniz Institute for Financial Research SAFE.
    19. Hsieh, Chih-Sheng & Lin, Xu, 2017. "Gender and racial peer effects with endogenous network formation," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 135-147.
    20. Gong, Pu & Weng, Yingliang, 2016. "Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 173-191.
    21. Andreas A. Andrikopoulos & Dimitrios C. Gkountanis, 2011. "Issues and Models in Applied Econometrics: A partial survey," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 9(2), pages 107-165.

    More about this item

    Keywords

    econometrie ; modeles;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: https://edirc.repec.org/data/delvlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.