IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Nuevo Enfoque En La Estimación De Los Ajustes Por Devengo Anormales: Un Modelo Desagregado

Listed author(s):
  • Francisco Poveda

    (Universidad de Alicante)

Registered author(s):

    A fundamental question about the analysis of financial information is the potential manipulations that could be introduced by insiders in the information that is revealed to investors. In this context, this article is focused on the analysis of abnormal accruals as a potential instrument to implement earnings management practices.Concretely, a non aggregated abnormal accruals estimation model is proposed, where each component of accruals is controlled by the variables it really depends on. The analysis of specification and power of earnings management tests show better results inrelation to panel data models derived from the classical Jones (1991) model. Un aspecto crucial en el análisis de la información financiera son las posibles manipulaciones introducidas de forma discrecional por los directivos en la información que dan a conocer a los usuarios. En este contexto, este trabajo se centra en el análisis de los ajustes por devengo como potencial instrumento a disposición de la discrecionalidad de los elaboradores de la información financiera. Concretamente, se plantea un modelo desagregado de estimación de ajustes por devengo anormales en el que cada componente se controla por las variables de las que efectivamente depende. El análisis de especificación y potencia del contraste de earnings management muestra resultados claramente superiores a los planteamientos de panel derivados del clásico modelo de Jones (1991).

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Fisrt version / Primera version, 2003
    Download Restriction: no

    Paper provided by Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie) in its series Working Papers. Serie EC with number 2003-22.

    in new window

    Length: 42 pages
    Date of creation: Nov 2003
    Publication status: Published by Ivie
    Handle: RePEc:ivi:wpasec:2003-22
    Contact details of provider: Postal:
    C/ Guardia Civil, 22, Esc 2a, 1o, E-46020 VALENCIA

    Phone: +34 96 319 00 50
    Fax: +34 96 319 00 55
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ivi:wpasec:2003-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Departamento de Edición)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.