IDEAS home Printed from
   My bibliography  Save this paper

Le persone comuni fanno previsioni economiche seguendo logiche econometriche o meccanismi psicologici?


  • Maurizio Bovi


La psicologia mostra che la probabilità soggettiva associata ad eventi economici futuri viene distorta in modo sistematico, rispetto a quella oggettiva, da elementi psicologici diffusi e persistenti. Lo stesso vale per l'interpretazione retrospettiva dei fatti economici. In particolare, si possono avere giudizi troppo critici e aspettative troppo ottimistiche il che porta, di conseguenza, a commettere "errori" di previsione. In periodi di crisi, inoltre, gli psicologi sostengono che le persone tendono a fare previsioni relativamente troppo ottimistiche e a dare giudizi ancor più critici, amplificando l'incoerenza tra la lettura ex post ed ex ante della medesima situazione. La teoria psicologica suggerisce anche che le condizioni personali/future sono sistematicamente percepite più rosee rispetto a quelle generali/passate. E' evidente come questo quadro contrasti fortemente con le assunzioni standard degli economisti. L'analisi delle risposte mensilmente date nel corso di due decenni dai cittadini europei sugli andamenti passati e futuri della situazione economica personale e generale, conferma con forza la presenza delle distorsioni indicate dalla teoria della psicologia cognitiva in tutti e dieci i paesi europei analizzati.

Suggested Citation

  • Maurizio Bovi, "undated". "Le persone comuni fanno previsioni economiche seguendo logiche econometriche o meccanismi psicologici?," Working Papers wp2009-5, Department of the Treasury, Ministry of the Economy and of Finance.
  • Handle: RePEc:itt:wpaper:wp2009-5

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, Elsevier.
    4. Alex S. Morton & Granville Tunnicliffe-Wilson, 2004. "A class of modified high-order autoregressive models with improved resolution of low-frequency cycles," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 235-250, March.
    5. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    8. Tommaso Proietti & Cecilia Frale, 2011. "New proposals for the quantification of qualitative survey data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 393-408, July.
    9. Andrew Harvey & Chia-Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    10. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    11. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non-linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300.
    12. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    13. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    14. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    15. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    16. Harvey, Andrew & Proietti, Tommaso (ed.), 2005. "Readings in Unobserved Components Models," OUP Catalogue, Oxford University Press, number 9780199278695.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Cognitive Psychology; Expectations; Forecasting; Survey Data;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:itt:wpaper:wp2009-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michele Petrocelli). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.