IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2025-252.html
   My bibliography  Save this paper

GDP Nowcasting Performance of Traditional Econometric Models vs Machine-Learning Algorithms: Simulation and Case Studies

Author

Listed:
  • Klakow Akepanidtaworn
  • Korkrid Akepanidtaworn

Abstract

Are Machine Learning (ML) algorithms superior to traditional econometric models for GDP nowcasting in a time series setting? Based on our evaluation of all models from both classes ever used in nowcasting across simulation and six country cases, traditional econometric models tend to outperform ML algorithms. Among the ML algorithms, linear ML algorithm – Lasso and Elastic Net – perform best in nowcasting, even surpassing traditional econometric models in cases of long GDP data and rich high-frequency indicators. Among the traditional econometric models, the Bridge and Dynamic Factor deliver the strongest empirical results, while Three-Pass Regression Filter performs well in our simulation. Due to the relatively short length of GDP series, complex and non-linear ML algorithms are prone to overfitting, which compromises their out-of-sample performance.

Suggested Citation

  • Klakow Akepanidtaworn & Korkrid Akepanidtaworn, 2025. "GDP Nowcasting Performance of Traditional Econometric Models vs Machine-Learning Algorithms: Simulation and Case Studies," IMF Working Papers 2025/252, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2025/252
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=572360
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2025/252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.