IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2022-151.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Housing Boom and Headline Inflation: Insights from Machine Learning

Author

Listed:
  • Yang Liu
  • Di Yang
  • Mr. Yunhui Zhao

Abstract

Inflation has been rising during the pandemic against supply chain disruptions and a multi-year boom in global owner-occupied house prices. We present some stylized facts pointing to house prices as a leading indicator of headline inflation in the U.S. and eight other major economies with fast-rising house prices. We then apply machine learning methods to forecast inflation in two housing components (rent and owner-occupied housing cost) of the headline inflation and draw tentative inferences about inflationary impact. Our results suggest that for most of these countries, the housing components could have a relatively large and sustained contribution to headline inflation, as inflation is just starting to reflect the higher house prices. Methodologically, for the vast majority of countries we analyze, machine-learning models outperform the VAR model, suggesting some potential value for incorporating such models into inflation forecasting.

Suggested Citation

  • Yang Liu & Di Yang & Mr. Yunhui Zhao, 2022. "Housing Boom and Headline Inflation: Insights from Machine Learning," IMF Working Papers 2022/151, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2022/151
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=521324
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2022/151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.