IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2020-277.html

Assessing Targeted Containment Policies to Fight COVID-19

Author

Listed:
  • Mr. Francesco Grigoli
  • José M. Mota

Abstract

The large economic costs of full-blown lockdowns in response to COVID-19 outbreaks, coupled with heterogeneous mortality rates across age groups, led to question non-discriminatory containment measures. In this paper we provide an assessment of the targeted approach to containment. We propose a SIR-macro model that allows for heterogeneous agents in terms of mortality rates and contact rates, and in which the government optimally bans people from working. We find that under a targeted policy, the optimal containment reaches a larger portion of the population than under a blanket policy and is held in place for longer. Compared to a blanket policy, a targeted approach results in a smaller death count. Yet, it is not a panacea: the recession is larger under such approach as the containment policy applies to a larger fraction of people, remains in place for longer, and herd immunity is achieved later. Moreover, we find that increased interactions between low- and high-risk individuals effectively reduce the benefits of a targeted approach to containment.

Suggested Citation

  • Mr. Francesco Grigoli & José M. Mota, 2020. "Assessing Targeted Containment Policies to Fight COVID-19," IMF Working Papers 2020/277, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2020/277
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=49878
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Health > Distancing and Lockdown > Optimal policy

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • H00 - Public Economics - - General - - - General
    • I10 - Health, Education, and Welfare - - Health - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2020/277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.