IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Small Sample Properties of GARCH Estimates and Persistence

  • Hwang. S.
  • Pedro L. Valls Pereira

It is shown that the ML estimates of the popular GARCH(1,1) model are significantly negatively biased in small samples and that in many cases converged estimates are not possible with Bollerslev's non-negativity conditions. Results also indicate that a high level of persistence in GARCH(1,1) models obtained using a large number of observations has autocorrelations lower than these ML estimates suggest in small samples. Considering the size of biases and convergence errors, it is proposed that at least 250 observations are needed for ARCH(1) models and 500 observations for GARCH(1,1) models. A simple measure of how much GARCH conditional volatility explains squared returns is proposed. The measure indicates that for a typical index return volatility whose ARCH parameter is very small, the conditional volatility hardly explains squared returns.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 500 Can't connect to If this is indeed the case, please notify (Naercio Menezes)

Download Restriction: no

Paper provided by Finance Lab, Insper Instituto de Ensino e Pesquisa in its series Finance Lab Working Papers with number flwp_48.

in new window

Date of creation: Oct 2003
Date of revision:
Handle: RePEc:ibm:finlab:flwp_48
Contact details of provider: Postal: Rua Quatá 300, São Paulo, SP 04546-042
Fax: +55+11+287-9076
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Daniel B. Nelson & Dean P. Foster, 1994. "Asypmtotic Filtering Theory for Univariate Arch Models," NBER Technical Working Papers 0129, National Bureau of Economic Research, Inc.
  2. Drost, F.C. & Nijman, T.E., 1990. "Temporal aggregation of GARCH processes," Discussion Paper 1990-66, Tilburg University, Center for Economic Research.
  3. Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
  4. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  6. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  7. Jurgen A. Doornik and Marius Ooms, 2001. "Multimodality and the GARCH Likelihood," Computing in Economics and Finance 2001 76, Society for Computational Economics.
  8. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  9. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  10. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
  11. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ibm:finlab:flwp_48. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Naercio Menezes)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.