IDEAS home Printed from https://ideas.repec.org/p/ibm/finlab/flwp_48.html
   My bibliography  Save this paper

Small Sample Properties of GARCH Estimates and Persistence

Author

Listed:
  • Hwang. S.
  • Pedro L. Valls Pereira

Abstract

It is shown that the ML estimates of the popular GARCH(1,1) model are significantly negatively biased in small samples and that in many cases converged estimates are not possible with Bollerslev's non-negativity conditions. Results also indicate that a high level of persistence in GARCH(1,1) models obtained using a large number of observations has autocorrelations lower than these ML estimates suggest in small samples. Considering the size of biases and convergence errors, it is proposed that at least 250 observations are needed for ARCH(1) models and 500 observations for GARCH(1,1) models. A simple measure of how much GARCH conditional volatility explains squared returns is proposed. The measure indicates that for a typical index return volatility whose ARCH parameter is very small, the conditional volatility hardly explains squared returns.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hwang. S. & Pedro L. Valls Pereira, 2003. "Small Sample Properties of GARCH Estimates and Persistence," Finance Lab Working Papers flwp_48, Finance Lab, Insper Instituto de Ensino e Pesquisa.
  • Handle: RePEc:ibm:finlab:flwp_48
    as

    Download full text from publisher

    File URL: http://www.ibmecsp.edu.br/pesquisa/download.php?recid=2454
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    3. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    4. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    5. Jurgen A. Doornik & Marius Ooms, 2000. "Multimodality and the GARCH Likelihood," Econometric Society World Congress 2000 Contributed Papers 0798, Econometric Society.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    8. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    9. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    10. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    11. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibm:finlab:flwp_48. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Naercio Menezes). General contact details of provider: http://edirc.repec.org/data/ibmecbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.