IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Social Indeterminacy

  • Gil Kalai


Registered author(s):

    An extension of Condorcet's paradox by McGarvey (1953) asserts that for every asymmetric relation R on a finite set of candidates there is a strict-preferences voter profile that has the relation R as its strict simple majority relation. We prove that McGarvey's theorem can be extended to arbitrary neutral monotone social welfare functions which can be described by a strong simple game G if the voting power of each individual, measured by the it Shapley-Shubik power index, is sufficiently small. Our proof is based on an extension to another classic result concerning the majority rule. Condorcet studied an election between two candidates in which the voters' choices are random and independent and the probability of a voter choosing the first candidate is p > 1/2. Condorcet's Jury Theorem asserts that if the number of voters tends to infinity then the probability that the first candidate will be elected tends to one. We prove that this assertion extends to a sequence of arbitrary monotone strong simple games if and only if the maximum voting power for all individuals tends to zero.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem in its series Discussion Paper Series with number dp362.

    in new window

    Length: 38 pages
    Date of creation: Jun 2004
    Date of revision:
    Publication status: Published in Econometrica, 2004, vol. 72, pp. 1565-1581.
    Handle: RePEc:huj:dispap:dp362
    Contact details of provider: Postal: Feldman Building - Givat Ram - 91904 Jerusalem
    Phone: +972-2-6584135
    Fax: +972-2-6513681
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ilan Nehama)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.