IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On Developing Ridge Regression Parameters: A Graphical investigation

  • Muniz, Gisela

    (International University)

  • Kibria, B. M.Golam

    (International University)

  • Shukur, Ghazi

    (Jönköping University)

In this paper we have reviewed some existing and proposed some new estimators for estimating the ridge parameter "k" . All in all 19 different estimators have been studied. The investigation has been carried out using Monte Carlo simulations. A large number of different models were investigated where the variance of the random error, the number of variables included in the model, the correlations among the explanatory variables, the sample size and the unknown coefficients vectors "beta" have been varied. For each model we have performed 2000 replications and presented the results both in term of figures and tables. Based on the simulation study, we found that increasing the number of correlated variable, the variance of the random error and increasing the correlation between the independent variables have negative effect on the MSE. When the sample size increases the MSE decreases even when the correlation between the independent variables and the variance of the random error are large. In all situations, the proposed estimators have smaller MSE than the ordinary least squared and some other existing estimators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Helena Nilsson)

Download Restriction: no

Paper provided by HUI Research in its series HUI Working Papers with number 29.

in new window

Length: 25 pages
Date of creation: 01 May 2009
Date of revision:
Handle: RePEc:hhs:huiwps:0029
Contact details of provider: Postal: HUI Research, Regeringsgatan 60, 103 29 Stockholm, Sweden
Phone: +46 (0)8 762 72 80
Fax: +46 (0)8 679 76 06
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alkhamisi, M.A. & Shukur, Ghazi, 2007. "Developing Ridge Parameters for SUR Models," Working Paper Series in Economics and Institutions of Innovation 80, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:huiwps:0029. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Nilsson)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.