IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0304.html

Bootstrapping Error Component Models

Author

Listed:
  • Andersson, Michael K.

    (National Institute of Economic Research)

  • Karlsson, Sune

    (Dept. of Economic Statistics, Stockholm School of Economics)

Abstract

This paper proposes several resampling algorithms suitable for error component models and evaluates them in the context of bootstrap testing. In short, all the algorithms work well and lead to tests with correct or close to correct size. There is thus little or no reason not to use the bootstrap with error component models.

Suggested Citation

  • Andersson, Michael K. & Karlsson, Sune, 1999. "Bootstrapping Error Component Models," SSE/EFI Working Paper Series in Economics and Finance 304, Stockholm School of Economics, revised 30 Jun 2000.
  • Handle: RePEc:hhs:hastef:0304
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2018. "Robust linear static panel data models using ε-contamination," Journal of Econometrics, Elsevier, vol. 202(1), pages 108-123.
    2. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    3. Stanislav Anatolyev, 2007. "The basics of bootstrapping (in Russian)," Quantile, Quantile, issue 3, pages 1-12, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.