IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0304.html
   My bibliography  Save this paper

Bootstrapping Error Component Models

Author

Listed:
  • Andersson, Michael K.

    (National Institute of Economic Research)

  • Karlsson, Sune

    (Dept. of Economic Statistics, Stockholm School of Economics)

Abstract

This paper proposes several resampling algorithms suitable for error component models and evaluates them in the context of bootstrap testing. In short, all the algorithms work well and lead to tests with correct or close to correct size. There is thus little or no reason not to use the bootstrap with error component models.

Suggested Citation

  • Andersson, Michael K. & Karlsson, Sune, 1999. "Bootstrapping Error Component Models," SSE/EFI Working Paper Series in Economics and Finance 304, Stockholm School of Economics, revised 30 Jun 2000.
  • Handle: RePEc:hhs:hastef:0304
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. James G. MacKinnon & Russell Davidson, 1996. "The Size And Power Of Bootstrap Tests," Working Paper 932, Economics Department, Queen's University.
    2. Bellmann, L & Breitung, J & Wagner, Joachim, 1989. "Bias Correction and Bootstrapping of Error Component Models for Panel Data: Theory and Applications," Empirical Economics, Springer, vol. 14(4), pages 329-342.
    3. Davidson, Russell & MacKinnon, James, 2001. "Bootstrap Tests: How Many Bootstraps?," Queen's Economics Department Working Papers 273506, Queen's University - Department of Economics.
    4. Davidson, Russell & MacKinnon, James G., 1996. "The Power of Bootstrap Tests," Queen's Institute for Economic Research Discussion Papers 273372, Queen's University - Department of Economics.
    5. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    6. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    7. Ziliak, James P, 1997. "Efficient Estimation with Panel Data When Instruments Are Predetermined: An Empirical Comparison of Moment-Condition Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 419-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2018. "Robust linear static panel data models using ε-contamination," Journal of Econometrics, Elsevier, vol. 202(1), pages 108-123.
    2. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    3. Stanislav Anatolyev, 2007. "The basics of bootstrapping (in Russian)," Quantile, Quantile, issue 3, pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Michael A., 2007. "Bootstrap hypothesis testing for some common statistical problems: A critical evaluation of size and power properties," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6321-6342, August.
    2. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    3. Johannesson Magnus & Östling Robert & Ranehill Eva, 2010. "The Effect of Competition on Physical Activity: A Randomized Trial," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-31, September.
    4. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    5. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    6. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    7. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    8. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    9. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    10. Christian Peretti, 2007. "Long Memory and Hysteresis," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 363-389, Springer.
    11. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    12. Sarlin, Peter & von Schweinitz, Gregor, 2021. "Optimizing Policymakers’ Loss Functions In Crisis Prediction: Before, Within Or After?," Macroeconomic Dynamics, Cambridge University Press, vol. 25(1), pages 100-123, January.
    13. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    14. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    15. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    16. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    17. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    18. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    19. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    20. Francis, Bill B. & Mougoué, Mbodja & Panchenko, Valentyn, 2010. "Is there a symmetric nonlinear causal relationship between large and small firms?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 23-38, January.
    21. Priscila Espinosa & Jose M. Pavía, 2023. "Automation in Regional Economic Synthetic Index Construction with Uncertainty Measurement," Forecasting, MDPI, vol. 5(2), pages 1-19, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.