IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01212353.html
   My bibliography  Save this paper

The deployment of BEV and FCEV in 2015

Author

Listed:
  • Julien Brunet

    (X-DEP-ECO - Département d'Économie de l'École Polytechnique - X - École polytechnique)

  • Alena Kotelnikova

    (X-DEP-ECO - Département d'Économie de l'École Polytechnique - X - École polytechnique)

  • Jean-Pierre Ponssard

    (CNRS - Centre National de la Recherche Scientifique, X-DEP-ECO - Département d'Économie de l'École Polytechnique - X - École polytechnique)

Abstract

In Europe the transport sector contributes about 25% of total GHG emissions, 75% of which come from road transport. Contrarily to industrial emissions road emissions have increased over the period 1990-2015 in OECD countries: California (+26%), Germany (0%), France (+12%), Japan (+2%), Denmark (+30%). The number of registered vehicles on road in these countries amounts respectively to: California (33 million), Germany (61.5 million), France (38 million), Japan (77 million), Denmark (4 million). Even if these numbers are not expected to grow in the future this calls for major programs to reduce the corresponding GHG emissions in order to achieve the global GHG targets for 2050. The benefits from these programs will spread out to non OECD countries in which road emissions are bound to increase. Programs to promote zero emissions vehicles (ZEV) effectively started in the 2000's through public private partnerships involving government agencies, manufacturers, utilities and fuel companies. These partnerships provided subsidies for R&D, pilot programs and infrastructure. Moreover, technical norms for emissions, global requirements for the portfolio of sales for manufacturers, rebates on the purchasing price for customers as well as various perks (driving bus lanes, free parking, etc.) are now in place. These multiple policy instruments constitute powerful incentives to orient the strategies of manufacturers and to stimulate the demand for ZEV. The carbon tax on the distribution of fossil fuels, whenever it exists, remains low and, at this stage, cannot be considered as an important driving force. The cases studies reveal important differences for the deployment of battery electric vehicle (BEV) versus fuel cell electric vehicle (FCEV). BEV is leading the game with a cheaper infrastructure investment cost and a lower cost for vehicle. The relatively low autonomy makes BEV mostly suited for urban use, which is a large segment of the road market. The current level of BEV vehicles on roads starts to be significant with California (70,000), Germany (25,000), France (31,000), Japan (608,000) Denmark (3,000), but they remain very low relative to the targets for 2020: California (1.5 million), Germany (1 million), France (2 million), Japan (0.8-1.1 million for ZEV new registrations), Denmark (0.25 million). The developments and efficiency gains in battery technology along with subsidies for battery charging public stations are expected to facilitate the achievement of the growth. The relative rates of equipment (number of publicly available stations / number of BEV) provide indirect evidence on the effort made in the different countries: California (3%), Germany (12%), France (28%), Japan (11%), and Denmark (61%). In some countries public procurement plays a significant role. In France Autolib (publicly available cars in towns) represents a large share of the overall BEV deployment (12%), and the government recently announced a 50% target for low emissions in all public vehicles new equipment. FCEV is still in an early deployment stage due to a higher infrastructure investment cost and a higher cost for vehicle. The relatively high autonomy combined with speed refueling make FCEV mostly suited for long distance and interurban usage. At present there are only a very limited numbers of HRS deployed: California (28), Germany (15), France (6), Japan (31), Japan (7), Denmark (7), and only a few units of H2 vehicles on road: California (300), Germany (125), France (60), Japan (7), Denmark (21). However, a detailed analysis of the current road maps suggests that FCEV has a large potential. Targets for the 2025-2030 horizons are significant in particular in Germany (4% in 2030), Denmark (4.5% in 2025) and Japan (15-20% for ZEV new registrations in 2020). The California ARB has recently redefined its program (subsidies and mandates) to provide higher incentives for FCEV. France appears to focus on specialized regional submarkets to promote FCEV (such as the use of H2 range extending light utility vehicles). The financing of the H2 infrastructure appears as a bottleneck for FCEV deployment. Roadmaps address this issue through progressive geographical expansion (clusters) and a high level of public subsidies hydrogen refueling station (HRS) in particular in all countries except France. At this stage of BEV and FCEV do not appear as direct competitors; they address distinct market segments. Unexpected delays in the development of infrastructure in FCEV, possible breakthroughs in battery technology, and the promotion of national champions may change the nature of this competition, making it more intense in the future.

Suggested Citation

  • Julien Brunet & Alena Kotelnikova & Jean-Pierre Ponssard, 2015. "The deployment of BEV and FCEV in 2015," Working Papers hal-01212353, HAL.
  • Handle: RePEc:hal:wpaper:hal-01212353
    Note: View the original document on HAL open archive server: https://polytechnique.hal.science/hal-01212353
    as

    Download full text from publisher

    File URL: https://polytechnique.hal.science/hal-01212353/document
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knüpfer, Kristina & Mäll, Martin & Esteban, Miguel & Shibayama, Tomoya, 2021. "Review of mixed-technology vehicle fleet evolution and representation in modelling studies: Policy contexts of Germany and Japan," Energy Policy, Elsevier, vol. 156(C).
    2. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    3. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    4. Marko Emanović & Martina Jakara & Danijela Barić, 2022. "Challenges and Opportunities for Future BEVs Adoption in Croatia," Sustainability, MDPI, vol. 14(13), pages 1-18, July.

    More about this item

    Keywords

    transports;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01212353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.