IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01196561.html

Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form

Author

Listed:
  • Eric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper studies values for cooperative games with transferable utility. Numerous such values can be characterized by axioms of Ψε-associated consistency, which require that a value is invariant under some parametrized linear transformation Ψε on the vector space of cooperative games with transferable utility. Xu et al. [(2008) Linear Algebr. Appl. 428, 1571–1586; (2009) Linear Algebr. Appl. 430, 2896–2897] Xu et al. [(2013) Linear Algebr. Appl. 439, 2205–2215], Hamiache [(2010) Int. Game Theor. Rev. 12, 175–187] and more recently Xu et al. [(2015) Linear Algebr. Appl. 471, 224–240] follow this approach by using a matrix analysis. The main drawback of these articles is the heaviness of the proofs to show that the matrix expression of the linear transformations is diagonalizable. By contrast, we provide quick proofs by relying on the Jordan normal form of the previous matrix.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Eric Rémila & Sylvain Béal & Philippe Solal, 2015. "Characterizations of three linear values for TU games by associated consistency: simple proofs using the Jordan normal form," Post-Print halshs-01196561, HAL.
  • Handle: RePEc:hal:journl:halshs-01196561
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenna Wang, 2021. "Bilateral associated game: Gain and loss in revaluation," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-12, July.
    2. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Theo Driessen, 2018. "Compromise for the per Capita Complaint: an optimization CharaCterization of two equalitarian values," Working Papers halshs-01931224, HAL.
    3. Norman L. Kleinberg, 2018. "A note on associated consistency and linear, symmetric values," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 913-925, September.
    4. Florian Navarro, 2019. "Necessary players, Myerson fairness and the equal treatment of equals," Annals of Operations Research, Springer, vol. 280(1), pages 111-119, September.
    5. Sylvain Béal & Mihai Manea & Eric Rémila & Phillippe Solal, 2018. "Games With Identical Shapley Values," Working Papers 2018-03, CRESE.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01196561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.