IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05250233.html
   My bibliography  Save this paper

Forecasting Aggregate Retail Sales with Google Trends

Author

Listed:
  • Elizaveta Golovanova

    (Russian Academy of National Economy and Public Administration under the President of the Russian Federation (RANEPA))

  • Andrey Zubarev

    (Russian Presidential Academy of National Economy and Public Administration (RANEPA))

Abstract

As the internet grows in popularity, many purchases are being made in online stores. Google Trends is an online tool that collects data on user queries and forms categories from them. We forecast the dynamics of both aggregate retail sales and individual categories of food and non-food products using macroeconomic variables and Google Trends categories that correspond to various product groups. For each type of retail, we consider the best forecasting models from macroeconomic variables and try to improve them by adding trends. For these purposes, we use pseudo-out-of-sample nowcasting as well as recursive forecasting several months ahead. We conclude that forecasts for food and non-food products can improve significantly once trends are added to the models.

Suggested Citation

  • Elizaveta Golovanova & Andrey Zubarev, 2021. "Forecasting Aggregate Retail Sales with Google Trends," Post-Print hal-05250233, HAL.
  • Handle: RePEc:hal:journl:hal-05250233
    DOI: 10.31477/rjmf.202104.50
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05250233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.