IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03679701.html

Optimal portfolio positioning within generalized Johnson distributions

Author

Listed:
  • N. Naguez
  • Jean-Luc Prigent

    (THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)

Abstract

Many empirical studies have shown that financial asset returns do not always exhibit Gaussian distributions, for example hedge fund returns. The introduction of the family of Johnson distributions allows a better fit to empirical financial data. Additionally, this class can be extended to a quite general family of distributions by considering all possible regular transformations of the standard Gaussian distribution. In this framework, we consider the portfolio optimal positioning problem, which has been first addressed by Brennan and Solanki [J. Financial Quant. Anal., 1981, 16, 279–300], Leland [J. Finance, 1980, 35, 581–594] and further developed by Carr and Madan [Quant. Finance, 2001, 1, 9–37] and Prigent [Generalized option based portfolio insurance. Working Paper, THEMA, University of Cergy-Pontoise, 2006]. As a by-product, we introduce the notion of Johnson stochastic processes. We determine and analyse the optimal portfolio for log return having Johnson distributions. The solution is characterized for arbitrary utility functions and illustrated in particular for a CRRA utility. Our findings show how the profiles of financial structured products must be selected when taking account of non Gaussian log-returns.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • N. Naguez & Jean-Luc Prigent, 2017. "Optimal portfolio positioning within generalized Johnson distributions," Post-Print hal-03679701, HAL.
  • Handle: RePEc:hal:journl:hal-03679701
    DOI: 10.1080/14697688.2016.1253859
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ipg:wpaper:2014-604 is not listed on IDEAS
    2. repec:ipg:wpaper:2014-511 is not listed on IDEAS
    3. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    4. Naceur Naguez, 2018. "Dynamic portfolio insurance strategies: risk management under Johnson distributions," Annals of Operations Research, Springer, vol. 262(2), pages 605-629, March.
    5. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    6. repec:ipg:wpaper:2014-509 is not listed on IDEAS
    7. repec:ipg:wpaper:2014-468 is not listed on IDEAS
    8. repec:ipg:wpaper:2014-531 is not listed on IDEAS
    9. repec:ipg:wpaper:2014-510 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03679701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.