IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03264006.html

Nonparametric estimation of non-exchangeable latent-variable models

Author

Listed:
  • Stéphane Bonhomme

    (University of Chicago)

  • Koen Jochmans

    (ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Marc Robin

    (ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique, Economics department - MIT - Massachusetts Institute of Technology)

Abstract

We propose a two-step method to nonparametrically estimate multivariate models in which the observed outcomes are independent conditional on a discrete latent variable. Applications include microeconometric models with unobserved types of agents, regime-switching models, and models with misclassification error. In the first step, we estimate weights that transform moments of the marginal distribution of the data into moments of the conditional distribution of the data for given values of the latent variable. In the second step, these conditional moments are estimated as weighted sample averages. We illustrate the method by estimating a model of wages with unobserved heterogeneity on PSID data.

Suggested Citation

  • Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2017. "Nonparametric estimation of non-exchangeable latent-variable models," Post-Print hal-03264006, HAL.
  • Handle: RePEc:hal:journl:hal-03264006
    DOI: 10.1016/j.jeconom.2017.08.006
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Djogbenou & Christian Gouriéroux & Joann Jasiak & Maygol Bandehali, 2024. "Composite Likelihood for Stochastic Migration Model with Unobserved Factor," Journal of Financial Econometrics, Oxford University Press, vol. 22(5), pages 1421-1455.
    2. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
    3. Oliver Cassagneau-Francis, 2022. "Essays on skills and education [Essais sur les compétences et l'éducation]," Sciences Po Economics Publications (main) tel-03857494, HAL.
    4. Martin Garcia-Vazquez, 2021. "Identification and Estimation of Non-stationary Hidden Markov Models," Working Papers 2021-023, Human Capital and Economic Opportunity Working Group.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03264006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.