IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02313369.html
   My bibliography  Save this paper

Designing Self-Storage Warehouses with Customer Choice

Author

Listed:
  • Shuyu Zhou

    (EM - EMLyon Business School)

  • Yeming Gong
  • René de Koster

Abstract

Self-storage warehousing is a rapidly growing industry where consumers or companies can rent storage space for personal or company use, over a certain horizon. This paper addresses the question of how to design the facilities so that revenue can be maximized over a nite horizon, considering multiple demand requirements with respect to size, pricing, location within the facility, climate control, security, or outside access, among others. Using a customer choice model to specify the probability of purchase for each fare product as a function of the set of fare products offered, we propose methods to design self-storage warehouses while allowing different customer choice behaviors. We model the problem as a mixed-integer program and solve it using column generation and branch-and-price algorithms. In addition, we study the impact of re-layout and methods to modify facility layout, since self-storage facilities are relatively fexible in layout and individual storage compartments can be adapted to changes in demand. We validate our model using the data of four self-storage warehouses, and show our method can improve the expected revenue by nearly 11% on average for these cases.

Suggested Citation

  • Shuyu Zhou & Yeming Gong & René de Koster, 2016. "Designing Self-Storage Warehouses with Customer Choice," Post-Print hal-02313369, HAL.
  • Handle: RePEc:hal:journl:hal-02313369
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    2. Zhe Yuan & Haoxuan Xu & Yeming (Yale) Gong & Chengbin Chu & Jinlong Zhang, 2017. "Designing public storage warehouses with high demand for revenue maximisation," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3686-3700, July.
    3. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02313369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.