IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01914859.html
   My bibliography  Save this paper

Precedence theorems and dynamic programming for the single-machine weighted tardiness problem

Author

Listed:
  • Salim Rostami

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Stefan Creemers

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Roel Leus

    (ORSTAT - Operations Research and Business Statistics - KU Leuven - Catholic University of Leuven = Katholieke Universiteit Leuven)

Abstract

We tackle precedence-constrained sequencing on a single machine in order to minimize total weighted tardiness. Classic dynamic programming (DP) methods for this problem are limited in performance due to excessive memory requirements, particularly when the precedence network is not sufficiently dense. Over the last decades, a number of precedence theorems have been proposed, which distinguish dominant precedence constraints for a job pool that is initially without precedence relation. In this paper, we connect and extend the findings of the foregoing two strands of literature. We develop a framework for applying the precedence theorems to the precedence-constrained problem to tighten the search space, and we propose an exact DP algorithm that utilizes a new efficient memory management technique. Our procedure outperforms the state-of-the-art algorithm for instances with medium to high network density. We also empirically verify the computational gain of using different sets of precedence theorems.

Suggested Citation

  • Salim Rostami & Stefan Creemers & Roel Leus, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," Post-Print hal-01914859, HAL.
  • Handle: RePEc:hal:journl:hal-01914859
    DOI: 10.1016/j.ejor.2018.06.004
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rostami, Salim & Creemers, Stefan & Wei, Wenchao & Leus, Roel, 2019. "Sequential testing of n-out-of-n systems: Precedence theorems and exact methods," European Journal of Operational Research, Elsevier, vol. 274(3), pages 876-885.
    2. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Integrated optimization of test case selection and sequencing for reliability testing of the mainboard of Internet backbone routers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 183-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01914859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.