IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00609550.html
   My bibliography  Save this paper

Pure exploration in finitely-armed and continuous-armed bandits

Author

Listed:
  • Gilles Stoltz

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Sébastien Bubeck

    (SEQUEL - Sequential Learning - LIFL - Laboratoire d'Informatique Fondamentale de Lille - Université de Lille, Sciences et Technologies - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lille, Sciences Humaines et Sociales - CNRS - Centre National de la Recherche Scientifique - Inria Lille - Nord Europe - Inria - Institut National de Recherche en Informatique et en Automatique - LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal - Université de Lille, Sciences et Technologies - Centrale Lille - CNRS - Centre National de la Recherche Scientifique)

  • Rémi Munos

    (SEQUEL - Sequential Learning - LIFL - Laboratoire d'Informatique Fondamentale de Lille - Université de Lille, Sciences et Technologies - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lille, Sciences Humaines et Sociales - CNRS - Centre National de la Recherche Scientifique - Inria Lille - Nord Europe - Inria - Institut National de Recherche en Informatique et en Automatique - LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal - Université de Lille, Sciences et Technologies - Centrale Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.

Suggested Citation

  • Gilles Stoltz & Sébastien Bubeck & Rémi Munos, 2011. "Pure exploration in finitely-armed and continuous-armed bandits," Post-Print hal-00609550, HAL.
  • Handle: RePEc:hal:journl:hal-00609550
    DOI: 10.1016/j.tcs.2010.12.059
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Billaud Friess & Arthur Macherey & Anthony Nouy & Clémentine Prieur, 2022. "A PAC algorithm in relative precision for bandit problem with costly sampling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 161-185, October.
    2. Alessandro Lizzeri & Eran Shmaya & Leeat Yariv, 2024. "Disentangling Exploration from Exploitation," NBER Working Papers 32424, National Bureau of Economic Research, Inc.
    3. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    4. Masahiro Kato & Kaito Ariu, 2021. "The Role of Contextual Information in Best Arm Identification," Papers 2106.14077, arXiv.org, revised Feb 2024.
    5. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    6. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    7. Mohammed Shahid Abdulla & L Ramprasath, 2021. "BBECT: Bandit -based Ethical Clinical Trials," Working papers 459, Indian Institute of Management Kozhikode.
    8. Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
    9. Hyeong Soo Chang, 2020. "An asymptotically optimal strategy for constrained multi-armed bandit problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 545-557, June.
    10. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00609550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.