IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A non-dictatorial criterion for optimal growth models

  • Alain Ayong Le Kama

    ()

    (EQUIPPE - ECONOMIE QUANTITATIVE, INTEGRATION, POLITIQUES PUBLIQUES ET ECONOMETRIE - Université Lille I - Sciences et technologies - Université Lille II - Droit et santé - Université Lille III - Sciences humaines et sociales - PRES Université Lille Nord de France)

  • Cuong Le Van

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne, EEP-PSE - Ecole d'Économie de Paris - Paris School of Economics - Ecole d'Économie de Paris)

  • Katheline Schubert

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne, EEP-PSE - Ecole d'Économie de Paris - Paris School of Economics - Ecole d'Économie de Paris)

There are two main approaches for defining social welfare relations for an economy with infinite horizon. The first one is to consider the set of intertemporal utility streams generated by a general set of bounded consumptions and define a preference relation between them. This relation is ideally required to satisfy two main axioms, the Pareto axiom, which guarantees efficiency and the Anonymity axiom, which guarantees equity. Basu and Mitra (2003) show that it is impossible to represent by a function a preference relation embodying both requirements, and Basu and Mitra (2007) propose and characterize a new welfare criterion called utilitarian social welfare relation. In the same framework, Chichilnisky (1996) proposes two axioms that capture the idea of sustainable growth : non-dictatorship of the present and non-dictatorship of the future, and exhibits a mixed criterion, adding a discounted utilitarian part, which gives a dictatorial role to the present, and a long term part, which gives a dictatorial role to the future. The drawback of Chichilnisky's approach is that it often does not allow to explicity characterize optimal growth paths with optimal control techniques. Our aim is less general than Chichilnisky's and Basu and Mitra's : we want to have a non-dictatorial criterion for optimal growth models. We restrict ourselves to the set of utilities of consumptions which are generated by a specific technology. We show that the undiscounted utilitarian criterion pioneered by Ramsey (1928) is not only convenient if one wants to solve an optimal growth problem but also sustainable, efficient and equitable.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://halshs.archives-ouvertes.fr/docs/00/27/57/58/PDF/V08030.pdf
Download Restriction: no

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00275758.

as
in new window

Length:
Date of creation: Apr 2008
Date of revision:
Handle: RePEc:hal:cesptp:halshs-00275758
Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00275758
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00275758. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.