IDEAS home Printed from https://ideas.repec.org/p/fmg/fmgsps/sp126.html
   My bibliography  Save this paper

The Emperor has no Clothes: Limits to Risk Modelling

Author

Listed:
  • Jon Danielsson

Abstract

This paper considers the properties of risk measures, primarily Value-at Risk (VaR), from both internal and external (regulatory) points of view. It is argued that since market data is endogenous to market behavior, statistical analysis made in times of stability does not provide much guidance in times of crisis. In an extensive survey across data classes and risk models, the empirical properties of current risk forecasting models are found to be lacking in robustness while being excessively volatile. For regulatory use, the VaR measure is lacking in the ability to fulfil its intended task, it gives misleading information about risk, and in some cases may actually increase both idiosyncratic and systemic risk. Finally, it is hypothesized that risk modelling is not an appropriate foundation for regulatory design, and alternative mechanisms are discussed.

Suggested Citation

  • Jon Danielsson, 2000. "The Emperor has no Clothes: Limits to Risk Modelling," FMG Special Papers sp126, Financial Markets Group.
  • Handle: RePEc:fmg:fmgsps:sp126
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/fmg/documents/specialPapers/2000/sp126.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    3. Bruno Solnik & François Longin, 1998. "Correlation Structure of International Equity Markets During Extremely Volatile Periods," Working Papers hal-00599996, HAL.
    4. De Bandt, Olivier & Hartmann, Philipp, 2000. "Systemic risk: A survey," Working Paper Series 35, European Central Bank.
    5. Jean-Pierre Zigrand & Jon Danielsson, 2001. "What Happens When You Regulate Risk? Evidence from a Simple Equilibrium Model," FMG Discussion Papers dp393, Financial Markets Group.
    6. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    7. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Con Keating & Hyun Song Shin & Charles Goodhart & Jon Danielsson, 2001. "An Academic Response to Basel II," FMG Special Papers sp130, Financial Markets Group.
    10. Nagatani, Takashi, 1999. "Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 297-310.
    11. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    12. Dong‐Hyun Ahn & Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 1999. "Optimal Risk Management Using Options," Journal of Finance, American Finance Association, vol. 54(1), pages 359-375, February.
    13. Morris, Stephen & Shin, Hyun Song, 1999. "Risk Management with Interdependent Choice," Oxford Review of Economic Policy, Oxford University Press, vol. 15(3), pages 52-62, Autumn.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    2. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    3. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    4. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    5. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    6. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    7. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    8. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    9. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    10. Jón Daníelsson & Jean-Pierre Zigrand, 2008. "Equilibrium asset pricing with systemic risk," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(2), pages 293-319, May.
    11. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    12. Guanghui Huang & Jing Xu & Wenting Xing, 2011. "Hedging strategies with a put option and their failure rates," Papers 1110.0159, arXiv.org.
    13. Lehnert, Thorsten & Wolff, Christian C, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
    14. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    15. Bajo, Emanuele & Barbi, Massimiliano & Romagnoli, Silvia, 2014. "Optimal corporate hedging using options with basis and production risk," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 56-71.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2011. "Optimizing international portfolios with options and forwards," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3188-3201.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    18. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    19. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    20. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fmg:fmgsps:sp126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.lse.ac.uk/fmg/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The FMG Administration (email available below). General contact details of provider: http://www.lse.ac.uk/fmg/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.