IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting (LOG) Volatility Models

Listed author(s):
  • Christodoulakis, G.A.
  • Satchell, S.E.
Registered author(s):

    A number of volatility forecasting studies have led to the perception that the ARCH- and Stochastic Volatility-type models provide poor out-of-sample forecasts of volatility. This is primarily based on the use of traditional forecast evaluation criteria concerning the accuracy and the unbiasedness of forecasts. In this paper we provide an assessment of volatility forecasting. We use the Log- Volatility framework to show how the inherent noise in the approximation of the actual- and unobservable - volatility by the squared return results in a misleading forecast evaluation. We argue that evaluation problems are likely to be exacebated by non-normality of the shocks and that non-linear and utility-based criteria can be more suitable for the evaluation of volatility forecasts.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Exeter University, Department of Economics in its series Discussion Papers with number 9814.

    in new window

    Date of creation: 1998
    Handle: RePEc:exe:wpaper:9814
    Contact details of provider: Postal:
    Streatham Court, Rennes Drive, Exeter EX4 4PU

    Phone: (01392) 263218
    Fax: (01392) 263242
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:9814. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carlos Cortinhas)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.