IDEAS home Printed from https://ideas.repec.org/p/est/wpaper/002.html
   My bibliography  Save this paper

ESeC-Rubin Missing Value Interpretation for a Regional Bottom-Up Hierarchical Forecasting

Author

Listed:
  • Antonio Anselmi

    (SAS Institute)

  • Paola Maddalena Chiodini

    () (Department of Statistics, University of Milano - Bicocca)

  • Flavio Verrecchia

    () (ESeC)

Abstract

in letteratura, per l’imputazione dei dati mancanti nelle serie storiche, si fa riferimento a statistiche applicate all’intera serie analizzata (e.g. media di tutti i termini della serie), ottenendo una costante d’imputazione generalmente adeguata per una specifica serie. Se le serie sono n (n -> infinito) è impossibile trovare un’unica funzione per le n costanti di imputazione dei missing. Obiettivo del lavoro è proporre un nuovo metodo di imputazione dei dati mancanti - ESeC-Rubin - per basi dati gerarchiche finalizzato alla modellistica temporale. In particolare, la ESeC-Rubin consente di ricostruire il dato mancante tenendo conto di una sequenza di metodi di imputazione e della naturale variabilità degli aggregati studiati. La metodologia proposta in questo lavoro trova ispirazione dalla teoria dei campioni dove non di rado si deve trovare la miglior soluzione possibile al problema del missing. In questo contesto la soluzione che si cerca di dare è quella di ricostruire il dato mancante tenendo conto della naturale variabilità del fenomeno allo studio (Rubin 1987, 1996; Hergoz e Rubin, 1983; Rubin e Shenker, 1986). In effetti la letteratura in tal senso fornisce una gamma piuttosto articolata di strategie che possono di volta in volta essere utilizzate in quanto appare immediatamente evidente che la soluzione non può essere unica e generalizzata. Infine, si presenterà una applicazione della ESeC-Rubin su dati socio-economici di fonte Eurostat. L’applicazione prodotta con SAS Forecast Server consente di comparare i modelli (selezionati in automatico) a partire dalla base dati osservata con missing values e differenti tipologie di imputazione.

Suggested Citation

  • Antonio Anselmi & Paola Maddalena Chiodini & Flavio Verrecchia, 2008. "ESeC-Rubin Missing Value Interpretation for a Regional Bottom-Up Hierarchical Forecasting," Working Papers 002, ESeC - Economic Statistics no-profit Association.
  • Handle: RePEc:est:wpaper:002
    as

    Download full text from publisher

    File URL: http://www.economicstatistics.eu/wp/pdf/ESeC_WP002_V20080926.pdf
    File Function: First version, 2008
    Download Restriction: no

    References listed on IDEAS

    as
    1. Giuseppe Eusepi & Alessandra Cepparulo & Flavio Verrecchia, 2007. "Bilevel Comparative Regional Analysis - Performances in Structural Grid," Working Papers 001, ESeC - Economic Statistics no-profit Association.
    2. Flavio Verrecchia, 2008. "Reply to Notes on: “The Generalised Index Numbers”," JeSP, ESeC - Economic Statistics no-profit Association, vol. 1(1), pages 11-12, June.
    3. Flavio Verrecchia, 2008. "The Generalised Index Numbers," JeSP, ESeC - Economic Statistics no-profit Association, vol. 1(1), pages 9-10, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Missing Value; Index Number; CAGR Imputation; Stochastic Imputation; ESeC-Rubin Imputation; Regional Bottom-Up Hierarchical Forecasting;

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:est:wpaper:002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Flavio Verrecchia). General contact details of provider: http://edirc.repec.org/data/eseccea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.