IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg1420.html

What is the target battery cost at which Battery Electric Vehicles are socially cost competitive?

Author

Listed:
  • David Newbery

    (EPRG and Control and Power Research Group, Imperial College London)

  • Goran Strbac

    (EPRG and Control and Power Research Group, Imperial College London)

Abstract

Battery electric vehicles (BEVs) could be key to decarbonizing transport, but are heavily subsidized. Most assessments of BEVs use highly taxed road fuel prices and ignore efficient pricing of electricity. We use efficient prices for transport fuels and electricity, to judge what battery costs would make BEVs cost competitive. High mileage, low discount rates and high oil prices could make BEVs cost competitive by 2020, and by 2030 fuel costs are comparable over a wider range. Its contribution lies in careful derivation of efficient prices and the concept of a target battery cost.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • David Newbery & Goran Strbac, 2014. "What is the target battery cost at which Battery Electric Vehicles are socially cost competitive?," Working Papers EPRG 1420, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg1420
    as

    Download full text from publisher

    File URL: https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp1420.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    2. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg1420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.