IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/129537.html
   My bibliography  Save this paper

Automated regime classification in multidimensional time series data using sliced Wasserstein k-means clustering

Author

Listed:
  • Luan, Qinmeng
  • Hamp, James

Abstract

Recent work has proposed Wasserstein k-means (Wk-means) clustering as a powerful method to classify regimes in time series data, and one-dimensional asset returns in particular. In this paper, we begin by studying in detail the behaviour of the Wasserstein k-means clustering algorithm applied to synthetic one-dimensional time series data. We extend the previous work by studying, in detail, the dynamics of the clustering algorithm and how varying the hyperparameters impacts the performance over different random initialisations. We compute simple metrics that we find to be useful in identifying high-quality clusterings. We then extend the technique of Wasserstein k-means clustering to multidimensional time series data by approximating the multidimensional Wasserstein distance as a sliced Wasserstein distance, resulting in a method we call 'sliced Wasserstein k-means (sWk-means) clustering'. We apply the sWk-means clustering method to the problem of automated regime classification in multidimensional time series data, using synthetic data to demonstrate the validity and effectiveness of the approach. Finally, we show that the sWk-means method is able to identify distinct market regimes in real multidimensional financial time series, using publicly available foreign exchange spot rate data as a case study. We conclude with remarks about some limitations of our approach and potential complementary or alternative approaches.

Suggested Citation

  • Luan, Qinmeng & Hamp, James, 2025. "Automated regime classification in multidimensional time series data using sliced Wasserstein k-means clustering," LSE Research Online Documents on Economics 129537, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:129537
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/129537/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:129537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.